

The Battery Program at Lawrence Berkeley National Lab

Venkat Srinivasan
Staff Scientist
Lawrence Berkeley National Lab

CPUC Energy Storage Workshop

March 9, 2011

History of battery research at LBNL

Performed the early experiments on non-aqueous electrolytes and ushered in the lithium battery

Formalized electrochemical engineering as a field

Pioneered the use of spectroscopic analysis of electrochemical systems

Developed a polymer that could revolutionize battery separators

Developed a concept to protect lithium metal; may hold the key to future batteries

Collaborators

Batteries for Advanced Transportation Technologies (BATT)

Energy/power Interplay

- Time of discharge a critical parameter for choice of storage system
- •For storing of renewable energy, weight or volume not as critical (atleast in the US).
- Grid storage cuts across all times of discharge. See http://www.electricitystorage.org/ESA/home/

Status of batteries for vehicles

EV Status

PHEV Status

- •Batteries are a compromise between performance, cost, life, and safety
- Requirements not as well defined for grid-storage applications

As of today, no one chemistry has all the necessary attributes

Cost of consumer electronics batteries

Cost of consumer electronics batteries

Cost of consumer electronics batteries

A Li-ion battery, as it is made today, will not be cost effective for most grid applications

Systems under consideration

Container batteries- High energy density

Cost scales with size.

Small discharge times

Systems under consideration

Container batteries- High energy density

Cost scales with size.

Small discharge times

Systems under consideration

Container batteries- High energy density
Cost scales with size.
Small discharge times

Flow batteries-Low energy density
Lower cost for larger systems
Longer discharge times

Batteries considered for grid-scale storage

How does a battery operate?

How does a battery operate?

How does a battery operate?

How to design a battery?

 LBNL has pioneered the use of mathematical tools to design batteries

Models as a comparative tool

Cost, life, and safety also need to be considered

Energy/power interplay

IC Engine=2500 Wh/kg

Energy/power interplay

IC Engine=2500 Wh/kg

- Flow batteries not high in energy density
- However, for large discharge times, they can be made very inexpensive

How to choose a flow battery?

- I. Need chemicals that are inexpensive
- 2. Need system with high reversibility
- 3. Need inexpensive catalyst and membranes
- 4. Need a high power device
 - Higher the power, smaller the amount of catalyst and membrane
 - Present day flow batteries ~ 50-100 mW/cm². Need W/cm²
- 5. Chemistry should not lead to structural changes (e.g., plating)
- 6. Safety critical, especially considering the size of the units

Flow batteries are also all about compromise

The LBNL approach

- Choose chemicals that are inexpensive and abundant
- Ensure that chosen chemistry is highly reversible
- Design the battery to ensure that very high power can be obtained

- Choice of battery depends on the application
 - A chemistry that is ideal for, say, vehicle applications, may not be the best for grid storage

- Choice of battery depends on the application
 - A chemistry that is ideal for, say, vehicle applications, may not be the best for grid storage
- It takes ~10 years for a battery to develop from research to commercialization
 - It also takes major capital investments

- Choice of battery depends on the application
 - A chemistry that is ideal for, say, vehicle applications, may not be the best for grid storage
- It takes ~10 years for a battery to develop from research to commercialization
 - It also takes major capital investments
- Batteries are all about compromise

- Choice of battery depends on the application
 - A chemistry that is ideal for, say, vehicle applications, may not be the best for grid storage
- It takes ~10 years for a battery to develop from research to commercialization
 - It also takes major capital investments
- Batteries are all about compromise
- Comparing various batteries can be challenging, especially early in development
 - Mathematical tools can be invaluable

More information

Batteries for Advanced
 Transportation Technologies
 (BATT) Program website:
 http://batt.lbl.gov/

Blog on batteries,
 "This week in batteries":
 http://thisweekinbatteries.blogspot.com/

This week in batteries (TWiB)

MONDAY, FEBRUARY 7, 2011

I'll be back... in 8 hours

Some of my readers have wondered why I have been off the blogosphere in the last few months. The reason is that we brought a house and the move from the apartment to our new place has been a bit of a time sink.

First we went through the four stages of home buying:

Stage 1: What the &\#@ do you mean they accepted our bid? I thought you said we were lowballing?

Stage 2: When you use words like "downpayment", does this involve us giving you a check?

VENKAT SRINIVASAN

ABOUT VENKAT

I work with a team of researchers at Lawrence Berkeley National Lab as part of the Batteries for Advanced Transportation Technologies (BATT) program. We're solving the problems that prevent lithium-ion batteries